Конденсированные среды и межфазные границы (Dec 2021)

Nonlinear optical properties of single-walled carbon nanotubes/water dispersed media exposed to laser radiation with nano- and femtosecond pulse durations

  • Pavel N. Vasilevsky,
  • Mikhail S. Savelyev,
  • Sergey A. Tereshchenko,
  • Sergey V. Selishchev,
  • Alexander Yu. Gerasimenko

DOI
https://doi.org/10.17308/kcmf.2021.23/3668
Journal volume & issue
Vol. 23, no. 4

Abstract

Read online

The constant increase in the power of laser systems and the growth of potential fields for the application of lasers make the problem of protecting sensitive elements of electro-optical systems and visual organs from high-intensity radiation an urgent issue. Modern systems are capable of generating laser radiation in a wide range of wavelengths, durations, and pulse repetition rates. High-quality protection requires the use of a universal limiter capable of attenuating laser radiation, not causing colour distortion, and having a high transmission value when exposed to low-power radiation. For this, dispersed media based on carbon nanotubes with unique physicochemical properties can be used. Such media have constant values of their absorption coefficient and refractive index when exposed to low-intensity laser radiation and change their properties only when the threshold value is reached. The aim of this work was the study of the nonlinear optical properties of an aqueous dispersion of single-walled carbon nanotubes exposed to nano- and femtosecond radiation. For the characterization of the studied medium, Z-scan and fixed sample location experiments were used. The optical parameters were calculated using a threshold model based on the radiation transfer equation. As a result of the experiments, it was shown that the aqueous dispersion of single-walled carbon nanotubes is capable of limiting radiation with wavelengths from the visible and near-IR ranges: nano- (532, 1064 nm) and femtosecond (810 nm). A description of nonlinear optical effects was proposed for when a medium is exposed to radiation with a nanosecond duration due to reverse saturable absorption and two-photon absorption. When the sample exposed for a femtosecond duration the main limiting effect is spatial self-phase modulation. The calculated optical parameters can be used to describe the behaviour of dispersions of carbon nanotubes when exposed to radiation with different intensities. The demonstrated effects allow us to conclude that it is promising to use the investigated media as limiters of high-intensity laser radiation in optical systems to protect light-sensitive elements.

Keywords