Nano Materials Science (Oct 2024)

Structure transformation induced bi-component Co–Mo/A-Co(OH)2 as highly efficient hydrogen evolution catalyst in alkaline media

  • Yingqing Ou,
  • Lu Liu,
  • Xiao Peng,
  • Lili Zhang,
  • Zhongwen Ou,
  • Wendong Zhang,
  • Yunhuai Zhang

Journal volume & issue
Vol. 6, no. 5
pp. 565 – 575

Abstract

Read online

Elucidating the inherent origins of the sluggish hydrogen evolution reaction (HER) kinetics in alkaline media and developing high-performance electrocatalysts are fundamental for the advances of conventional alkaline water electrolyzers and emerging anion exchange membrane (AEM) electrolyzers. Here we present a facile electrochemical modification strategy for the synthesis of bi-component Co–Mo(18%)/A-Co(OH)2 catalyst toward efficient HER catalysis in alkaline media. Porous Co–Mo alloys with adjustable Mo/Co atomic ratio are first prepared by H2-assisted cathodic electrodeposition. By virtue of the appropriate electronic structure and hydrogen binding energy, Co–Mo(18%) is the most HER active among the alloys and is further activated by a constant-current electrochemical modification process. Physical characterizations reveal the formation of amorphous Co(OH)2 nanoparticles on the surface. Electrokinetic analysis combined with theoretical calculations reveal that the in-situ formed Co(OH)2 can efficiently promote the water dissociation, resulting in accelerated Volmer-step kinetics. As a result, the Co–Mo(18%)/A-Co(OH)2 simultaneously achieves the optimization of the two factors dominating alkaline HER activity, i.e., water dissociation and hydrogen adsorption/desorption via the bifunctional synergy of the bi-components. The high HER activity (η10 of 47 ​mV at 10 ​mA ​cm−2) of Co–Mo(18%)/A-Co(OH)2 is close to benchmark Pt/C catalyst and comparable or superior to the most active non-noble metal catalysts.

Keywords