A Review on Liquid Crystal Polymers in Free-Standing Reversible Shape Memory Materials
Zhibin Wen,
Keke Yang,
Jean-Marie Raquez
Affiliations
Zhibin Wen
Laboratory of Polymeric and Composite Materials Center of Innovation and Research in Materials and Polymers, Materia Nova Research Center & University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
Keke Yang
Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MOE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
Jean-Marie Raquez
Laboratory of Polymeric and Composite Materials Center of Innovation and Research in Materials and Polymers, Materia Nova Research Center & University of Mons, 23 Place du Parc, B-7000 Mons, Belgium
Liquid crystal polymers have attracted massive attention as stimuli-responsive shape memory materials due to their unique reversible large-scale and high-speed actuations. These materials can be utilized to fabricate artificial muscles, sensors, and actuators driven by thermal order−disorder phase transition or trans−cis photoisomerization. This review collects most commonly used liquid crystal monomers and techniques to macroscopically order and align liquid crystal materials (monodomain), highlighting the unique materials on the thermal and photo responsive reversible shape memory effects. Challenges and potential future applications are also discussed.