Archives of Metallurgy and Materials (Dec 2015)

Modeling with FCA-Based Model of Microstructure Evolution of MgCa08 Alloy During Drawing of Thin Wire in Heated Die / Modelowanie Za Pomocą FCA Rozwoju Mikrostruktury Stopu MgCa08 Podczas Ciągnienia Cienkiego Drutu W Podgrzewanym Ciagadle

  • Svyetlichnyy D. S.,
  • Kustra P.,
  • Milenin A.

DOI
https://doi.org/10.1515/amm-2015-0438
Journal volume & issue
Vol. 60, no. 4
pp. 2721 – 2728

Abstract

Read online

The paper deals with a modeling of manufacturing process of thin wire of MgCa08 alloy used as biocompatible soluble threads for medical application. Some difficulties in material deformation subjected with its hexagonal structure can be solved with accurate establishment of the deformation conditions, especially temperature history of the whole process. In drawing process with heated die, wire is preheated in furnace and then deformed. The only narrow temperature range allows for multi-pass drawing without wire breaking. Diameter below 0.1 mm required for the final product makes very important the consideration of microstructure evolution because grain size is comparable with the wire dimensions. For this reason the problem is considered in the micro scale by using the frontal cellular automata (FCA)-based model. The goals of present work are the development and validation of FCA-base model of microstructure evolution of MgCa0.8 magnesium alloy. To reach this objective, plastometric and relaxation tests of MgCA08 alloy were done on physical simulator GLEEBLE 3800. Results of the experimental studies were used for parameters identification of the hardening-softening model of the material. Then, initial microstructure and its evolution during the drawing passes were simulated with FCA-based model. FCA consider dislocation density and flow stress, hardening and softening including recovery and recrystallization, grain refinement and grain rotation, as well as grain growth. It allows one to obtain structures close to real ones. Two variants of the drawing process with different temperature history were considered. The deformation scheme was the same. Simulation results with following short discussion confirm usefulness of FCA-based model for explanation and selection of rational technological condition of thin wire drawing of MgCa08 alloy.