Journal of Integrative Agriculture (Oct 2017)

Modeling curve dynamics and spatial geometry characteristics of rice leaves

  • Yong-hui ZHANG,
  • Liang TANG,
  • Xiao-jun LIU,
  • Lei-lei LIU,
  • Wei-xing CAO,
  • Yan ZHU

Journal volume & issue
Vol. 16, no. 10
pp. 2177 – 2190

Abstract

Read online

Abstract: The objective of this work was to develop a dynamic model for describing leaf curves and a detailed spatial geometry model of the rice leaf (including sub-models for unexpanded leaf blades, expanded leaf blades, and leaf sheaths), and to realize three-dimensional (3D) dynamic visualization of rice leaves by combining relevant models. Based on the experimental data of different cultivars and nitrogen (N) rates, the time-course spatial data of leaf curves on the main stem were collected during the rice development stage, then a dynamic model of the rice leaf curve was developed using quantitative modeling technology. Further, a detailed 3D geometric model of rice leaves was built based on the spatial geometry technique and the non-uniform rational B-spline (NURBS) method. Validating the rice leaf curve model with independent field experiment data showed that the average distances between observed and predicted curves were less than 0.89 and 1.20 cm at the tilling and jointing stages, respectively. The proposed leaf curve model and leaf spatial geometry model together with the relevant previous models were used to simulate the spatial morphology and the color dynamics of a single leaf and of leaves on the rice plant after different growing days by 3D visualization technology. The validation of the leaf curve model and the results of leaf 3D visualization indicated that our leaf curve model and leaf spatial geometry model could efficiently predict the dynamics of rice leaf spatial morphology during leaf development stages. These results provide a technical support for related research on virtual rice.

Keywords