Journal of Advanced Transportation (Jan 2020)
A Coordination Law for Multiple Air Vehicles in Distributed Communication Scenarios
Abstract
This paper proposes a consensus-based guidance methodology for multiple air vehicles to arrive at the same spot cooperatively. First, based on the Lyapunov stability theory, a guidance law with only one control parameter is proposed, and the exact expression of total flight time can be obtained with a control parameter equal to one. Then, a two-step guidance scheme, which can achieve a finite-time consensus of the flight time, is built upon the Lyapunov-based guidance law. In the first step, on account of the information exchange between the air vehicles through an undirected and connected communication topology, a time-varying control parameter is designed to reduce the disparities of the flight time. After the consensus of the flight time, the control parameter will remain constant at one, and simultaneous arrival can be achieved. Besides, the guidance strategy is applied in a leader-follower case that one of the vehicles cannot receive information from the others and acts as the leader. The effectiveness of the proposed method is demonstrated with simulations.