PLoS ONE (Jan 2017)
Supporting Better Evidence Generation and Use within Social Innovation in Health in Low- and Middle-Income Countries: A Qualitative Study.
Abstract
While several papers have highlighted a lack of evidence to scale social innovations in health, fewer have explored decision-maker understandings of the relative merit of different types of evidence, how such data are interpreted and applied, and what practical support is required to improve evidence generation. The objectives of this paper are to understand (1) beliefs and attitudes towards the value of and types of evidence in scaling social innovations for health, (2) approaches to evidence generation and evaluation used in systems and policy change, and (3) how better evidence-generation can be undertaken and supported within social innovation in health.Thirty-two one-on-one interviews were conducted between July and November 2015 with purposively selected practitioners, policymakers, and funders from low- and middle- income countries (LMICs). Data were analysed using a Framework Analysis Approach.While practitioners, funders, and policymakers said they held outcome evidence in high regard, their practices only bear out this assertion to varying degrees. Few have given systematic consideration to potential unintended consequences, in particular harm, of the programs they implement, fund, or adopt. Stakeholders suggest that better evidence-generation can be undertaken and supported within social innovation in health by supporting the research efforts of emerging community organizations; creating links between practitioners and academia; altering the funding landscape for evidence-generation; providing responsive technical education; and creating accountability for funders, practitioners, and policymakers.How better evidence-generation can be undertaken and supported within social innovation in health is a previously under-operationalised aspect of the policy-making process that remains essential in order to refrain from causing harm, enable the optimization of existing interventions, and ultimately, to scale and fund what works.