International Journal of Group Theory (Jun 2021)

The minimum sum of element orders of finite groups

  • Maghsoud Jahani,
  • Yadollah Marefat,
  • Hasan Refaghat,
  • Bahram Vakili Fasaghandisi

DOI
https://doi.org/10.22108/ijgt.2019.115910.1538
Journal volume & issue
Vol. 10, no. 2
pp. 55 – 60

Abstract

Read online

‎Let $ G $ be a finite group and \( \psi(G)=\sum_{g\in G}o(g) \)‎, ‎where $ o(g) $ denotes the order of $g\in G$‎. ‎We show that the Conjecture 4.6.5 posed in [Group Theory and Computation‎, ‎(2018) 59-90]‎, ‎is incorrect‎. ‎In fact‎, ‎we find a pair of finite groups $G$ and $S$ of the same order such that $ \psi(G)<\psi(S)$‎, ‎with $G$ solvable and $S$ simple‎.

Keywords