Journal of Dairy Science (Feb 2023)

Effects of dietary antioxidant supplementation on metabolism and inflammatory biomarkers in heat-stressed dairy cows

  • M.A. Abeyta,
  • M. Al-Qaisi,
  • E.A. Horst,
  • E.J. Mayorga,
  • S. Rodriguez-Jimenez,
  • B.M. Goetz,
  • S. Carta,
  • H. Tucker,
  • L.H. Baumgard

Journal volume & issue
Vol. 106, no. 2
pp. 1441 – 1452

Abstract

Read online

ABSTRACT: Heat-stress-induced inflammation may be ameliorated by antioxidant supplementation due to the purported effects of increased production of reactive oxygen species or oxidative stress on the gastrointestinal tract barrier. Thus, study objectives were to evaluate whether antioxidant supplementation [AGRADO Plus 2.0 (AP); EW Nutrition] affects metabolism and inflammatory biomarkers in heat-stressed lactating dairy cows. Thirty-two mid-lactation multiparous Holstein cows were assigned to 1 of 4 dietary-environmental treatments: (1) thermoneutral (TN) conditions and fed a control diet (TN-CON; n = 8), (2) TN and fed a diet with AP (10 g antioxidant; n = 8), (3) heat stress (HS) and fed a control diet (HS-CON; n = 8), or (4) HS and fed a diet with AP (HS-AP; n = 8). The trial consisted of a 23-d prefeeding phase and 2 experimental periods (P). Respective dietary treatments were top-dressed starting on d 1 of the prefeeding period and continued daily throughout the duration of the experiment. During P1 (4 d), baseline data were collected. During P2 (7 d), HS was artificially induced using an electric heat blanket (Thermotex Therapy Systems Ltd.). During P2, the effects of treatment, day, and treatment-by-day interaction were assessed using PROC MIXED of SAS (SAS Institute Inc.). Heat stress (treatments 3 and 4) increased rectal, vaginal, and skin temperatures (1.2°C, 1.1°C, and 2.0°C, respectively) and respiration rate (33 breaths per minute) relative to TN cows. As expected, HS decreased dry matter intake, milk yield, and energy-corrected milk yield (32%, 28%, and 28% from d 4 to 7, respectively) relative to TN. There were no effects of AP on body temperature indices or production. Milk fat, protein, and lactose concentrations remained unaltered by HS or AP; however, milk urea nitrogen was increased during HS regardless of AP supplementation (26% relative to TN). Circulating glucose remained unchanged by HS, AP, or time. Additionally, HS decreased circulating glucagon (29% from d 3 to 7 relative to TN), but there was no additional effect of AP. There was a tendency for nonesterified fatty acid concentrations to be increased in HS-AP cows throughout P2 (60% relative to TN-CON), whereas it remained similar in all other treatments. Blood urea nitrogen increased for both HS treatments from d 1 to 3 before steadily decreasing from d 5 to 7, with the overall increase being most pronounced in HS-CON cows (27% relative to TN-CON). Further, supplementing AP decreased blood urea nitrogen in HS-AP on d 3 relative to HS-CON (15%). Circulating serum amyloid A tended to be and lipopolysaccharide binding protein was increased by HS, but neither acute-phase protein was affected by AP. Overall, AP supplementation appeared to marginally alter metabolism but did not meaningfully alter inflammation during HS.

Keywords