Materials (May 2024)

Durability of Prestressed Piles in a Leachate Environment

  • Yu Wang,
  • Min Deng,
  • Rihong Zhang,
  • Xuming Yu,
  • Junzhong Xue,
  • Jing Zhang

DOI
https://doi.org/10.3390/ma17112497
Journal volume & issue
Vol. 17, no. 11
p. 2497

Abstract

Read online

Prestressed pipe piles are common concrete components characterized by dense concrete structures and favorable mechanical properties, and thus, extensively used as coastal soft soil foundations. However, their durability in harsh environments has not been fully clarified. In this study, leachate from an actual landfill site was collected from the east coast of China as the corrosive medium, and the corrosion process was accelerated by electrifying prestressed pipe piles. The results demonstrated that the concentration of chloride ions in the concrete of the prestressed pile increased with the increase in corrosion time. Moreover, the experimental corrosion of these prestressed piles in the drying–wetting cycle proved to be the most severe. However, a protective layer of epoxy resin coating can effectively inhibit the diffusion of chloride ions into the interior of the piles. The final theoretical corrosion amounts of the piles were 1.55 kg, 1.20 kg, and 1.64 kg under immersion, epoxy resin protection, and a drying–wetting cycle environment. The application of epoxy resin reduced chloride penetration by 22.6%, and the drying–wetting cycle increased chloride penetration by 5.8%, respectively, with corresponding corrosion potentials following similar patterns. The actual corrosion depth of the welding seam was 3.20 mm, and there was a large corrosion allowance compared with the requirement (6.53 mm) for the ultimate bending moment. In summary, these prestressed piles exhibited good durability in a leachate environment.

Keywords