Scientific Reports (Nov 2024)

Investigation of the effect of crystal size on the piezoelectric features of lead-free barium titanate ceramic using molecular dynamics simulation

  • S. Esmaeili,
  • M. H. Ehsani,
  • Davood Toghraie,
  • S. Saber-Samandari

DOI
https://doi.org/10.1038/s41598-024-79941-8
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 13

Abstract

Read online

Abstract This study investigated the piezoelectric properties of BaTiO3 ceramics with different sizes through molecular dynamics simulations. The results show that all samples reached thermal equilibrium at 300 K and equilibrium in potential energy within 10 ns, confirming effective equilibration. As the size of the ceramics increased, the mean square displacement and diffusion coefficients decreased from 0.217 and 0.0034 to 0.1934 Å2 and 0.003 Å2/ns, attributed to a more uniform microstructure with fewer defects, resulting in reduced ion mobility. Furthermore, saturation polarization, residual polarization, and coercive field values increased from 0.35, 0.1, and 0.175 to 0.42 C/m2, 0.16 C/m2, and 0.282 MV/m, respectively, with increasing sample size, highlighting enhanced polarization responses due to a greater volume of ferroelectric material. Larger barium titanate (BaTiO3) crystals can have better polarization due to more domains aligning, but they may not deform as much (lower strain) because the walls among those domains can’t move freely. While improved domain alignment contributed to higher polarization, the increased stress can restrict the mobility of the domain walls. These findings provided valuable insights into the size-dependent behavior of BaTiO3 ceramics, essential for optimizing their applications in electronic devices and sensors. The study underscored the importance of understanding microstructural effects on material properties for future advancements in ferroelectric technology.

Keywords