Vojnosanitetski Pregled (Jan 2011)
Pathogen inactivation in fresh frozen plasma using riboflavin and ultraviolet light: Effects on plasma proteins and coagulation factor VIII
Abstract
Background/Aim. Riboflavin (vitamin B2) activated by ultraviolet (UV) light, produces active oxygen which damages cell membrane and prevents replication of the carrier of diseases (viruses, bacteria, protozoa) in all blood products. The aim of this study was to establish the influence of the process of photo inactivation in pathogens using riboflavin and UV rays on the concentration of coagulation factor VIII:C (FVIII:C) and proteins in plasma that were treated before freezing. Methods. The examination included 20 units of plasma, separated from whole blood donated by voluntary blood donors around 6 hours from the moment of collection. The units were pooled and separated in to two groups: one consisted of 10 control units and the other of 10 experimental units. Experimental units of the plasma were treated by riboflavin (35 mL) and UV rays (6.24 J/mL, 265-370 nm) on Mirasol aparature (Caridian BCT Biotechnologies, USA) in approximate duration of 6 minutes. Furthermore, 35 mL of saline solution was added to the control plasma. One sample for examining was taken from the control plasma (KG) and two residual were taken from experimental plasma after the addition of riboflavin either before (EG1) or post illumination (EG2). Results. Comparing the mean values of FVIII:C (%) we noticed statistically significantly higher level in the EG1 group than in the EG2 group (65.00 ± 4.52 vs 63.20 ± 4.73; t = 4.323, p = 0.002), while between the KG and experimental groups (EG1 and EG2) there was no statistically significant difference in the concentration of FVIII:C. There was a statistically significant decrease of albumin concentration (g/L) in the EG2 group comparing to the KG (33.35 ± 0.94 vs 31.94 ± 0.84; t = 3.534, p = 0.002), but there was no mentioned difference in albumin concentration between the KG and the EG1, so as between the EG1 and the EG2. Conclusion. Plasma inactivated by riboflavin and UV rays (Mirasol PRT sistem, Caridian BCT, USA) keeps all the characteristics of conventional plasma, so it could be used for the treatment of pathological conditions that demand transfusion of fresh frozen plasma, or in patients with thrombotic thrombocytopenic purpure when we use therapeutic exchange of plasma.
Keywords