Establishment of a secondary infection laboratory model of Echinococcus shiquicus metacestode using BALB/c mice and Mongolian jirds (Meriones unguiculatus)
State Key Laboratory of Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/National Para-reference Laboratory for Animal Echinococcosis/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Zoonoses of Agriculture Ministry/Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, Gansu Province, People's Republic of China
Li Li
State Key Laboratory of Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/National Para-reference Laboratory for Animal Echinococcosis/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Zoonoses of Agriculture Ministry/Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, Gansu Province, People's Republic of China
Fuling Xu
State Key Laboratory of Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/National Para-reference Laboratory for Animal Echinococcosis/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Zoonoses of Agriculture Ministry/Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, Gansu Province, People's Republic of China
Hongbin Yan
State Key Laboratory of Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/National Para-reference Laboratory for Animal Echinococcosis/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Zoonoses of Agriculture Ministry/Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, Gansu Province, People's Republic of China
State Key Laboratory of Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/National Para-reference Laboratory for Animal Echinococcosis/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Zoonoses of Agriculture Ministry/Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, Gansu Province, People's Republic of China
Nigus Abebe Shumuye
State Key Laboratory of Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/National Para-reference Laboratory for Animal Echinococcosis/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Zoonoses of Agriculture Ministry/Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, Gansu Province, People's Republic of China
Xiaofeng Nian
State Key Laboratory of Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/National Para-reference Laboratory for Animal Echinococcosis/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Zoonoses of Agriculture Ministry/Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, Gansu Province, People's Republic of China
Wenhui Li
State Key Laboratory of Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/National Para-reference Laboratory for Animal Echinococcosis/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Zoonoses of Agriculture Ministry/Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, Gansu Province, People's Republic of China
Nianzhang Zhang
State Key Laboratory of Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/National Para-reference Laboratory for Animal Echinococcosis/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Zoonoses of Agriculture Ministry/Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, Gansu Province, People's Republic of China
Baoquan Fu
State Key Laboratory of Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/National Para-reference Laboratory for Animal Echinococcosis/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Zoonoses of Agriculture Ministry/Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, Gansu Province, People's Republic of China Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou 225009, Jiangsu Province, People's Republic of China
Wanzhong Jia
State Key Laboratory of Animal Disease Control and Prevention/College of Veterinary Medicine, Lanzhou University/National Para-reference Laboratory for Animal Echinococcosis/Key Laboratory of Veterinary Parasitology of Gansu Province/Key Laboratory of Zoonoses of Agriculture Ministry/Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, Gansu Province, People's Republic of China Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease, Yangzhou 225009, Jiangsu Province, People's Republic of China
Echinococcus shiquicus is peculiar to the Qinghai–Tibet plateau of China. Research on this parasite has mainly focused on epidemiological surveys and life cycle studies. So far, limited laboratory studies have been reported. Here, experimental infection of E. shiquicus metacestode in BALB/c mice and Mongolian jirds (Meriones unguiculatus) was carried out to establish alternative laboratory animal models. Intraperitoneal inoculation of metacestode material containing protoscoleces (PSCs) obtained from infected plateau pikas were conducted on BALB/c mice. Furthermore, metacestode material without PSCs deriving from infected BALB/c mice was intraperitoneally inoculated to Mongolian jirds. Experimental animals were dissected for macroscopic and histopathological examination. The growth of cysts in BALB/c mice was infiltrative, and they invaded the murine entire body. Most of the metacestode cysts were multicystic, but a few were unilocular. The cysts contained sterile vesicles, which had no PSCs. The metacestode materials were able to successfully infect new mice. In the jirds model, E. shiquicus cysts were typically formed freely in the peritoneal cavity; the majority of these cysts were free while a small portion adhered loosely to nearby organs. The proportion of fertile cysts was high, and contained many PSCs. The PSCs produced in Mongolian jirds also successfully infected new ones, which confirms that jirds can serve as an alternative experimental intermediate host. In conclusion, a laboratory animal infection was successfully established for E. shiquicus using BALB/c mice and Mongolian jirds. These results provide new models for the in-depth study of Echinococcus metacestode survival strategy, host interactions and immune escape mechanism.