Applied Sciences (Apr 2022)

A Lightweight Attention-Based Network towards Distracted Driving Behavior Recognition

  • Yingcheng Lin,
  • Dingxin Cao,
  • Zanhao Fu,
  • Yanmei Huang,
  • Yanyi Song

DOI
https://doi.org/10.3390/app12094191
Journal volume & issue
Vol. 12, no. 9
p. 4191

Abstract

Read online

Distracted driving is currently a global issue causing fatal traffic crashes and injuries. Although deep learning has achieved significant success in various fields, it still faces the trade-off between computation cost and overall accuracy in the field of distracted driving behavior recognition. This paper addresses this problem and proposes a novel lightweight attention-based (LWANet) network for image classification tasks. To reduce the computation cost and trainable parameters, we replace standard convolution layers with depthwise separable convolutions and optimize the classic VGG16 architecture by 98.16% trainable parameters reduction. Inspired by the attention mechanism in cognitive science, a lightweight inverted residual attention module (IRAM) is proposed to simulate human attention, extract more specific features, and improve the overall accuracy. LWANet achieved an accuracy of 99.37% on Statefarm’s dataset and 98.45% on American University in Cairo’s dataset. With only 1.22 M trainable parameters and a model file size of 4.68 MB, the quantitative experimental results demonstrate that the proposed LWANet obtains state-of-the-art overall performance in deep learning-based distracted driving behavior recognition.

Keywords