Scientific Reports (Jan 2024)

Insights into the DHQ-BN: mechanical, electronic, and optical properties

  • K. A. Lopes Lima,
  • F. L. Lopes Mendonça,
  • W. F. Giozza,
  • R. T. de Sousa Junior,
  • L. A. Ribeiro Junior

DOI
https://doi.org/10.1038/s41598-024-52347-2
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Computational materials research is vital in improving our understanding of various class of materials and their properties, contributing valuable information that helps predict innovative structures and complement empirical investigations. In this context, DHQ-graphene recently emerged as a stable two-dimensional carbon allotrope composed of decagonal, hexagonal, and quadrilateral carbon rings. Here, we employ density functional theory calculations to investigate the mechanical, electronic, and optical features of its boron nitride counterpart (DHQ-BN). Our findings reveal an insulating band gap of 5.11 eV at the HSE06 level and good structural stability supported by phonon calculations and ab initio molecular dynamics simulations. Moreover, DHQ-BN exhibits strong ultraviolet (UV) activity, suggesting its potential as a highly efficient UV light absorber. Its mechanical properties, including Young’s modulus (230 GPa) and Poisson’s ratio (0.7), provide insight into its mechanical resilience and structural stability.