Journal of Marine Science and Engineering (Aug 2020)

Predicting Wind Wave Suppression on Irregular Long Waves

  • Taylor Bailey,
  • Lauren Ross,
  • Mary Bryant,
  • Duncan Bryant

DOI
https://doi.org/10.3390/jmse8080619
Journal volume & issue
Vol. 8, no. 8
p. 619

Abstract

Read online

The applicability of the wind wave suppression model developed by Chen and Belcher (2000) to irregular wave environments is investigated in this study. Monochromatic and irregular wave environments were simulated in the W2 (Wind/Wave) laboratory at the University of Maine under varying wind speeds. The Chen and Belcher (2000) model accurately predicts the reduction of the energy density of the wind waves in the presence of the monochromatic waves as a function of wave steepness, but under predicts this energy dissipation for the irregular waves. This is due to the consideration of a single wave frequency in the estimation of the growth rate and wave-induced stress of the monochromatic waves. The same formulations for the growth rate and wave-induced stress cannot be applied to irregular waves because their spectra contain energy over a wide range of frequencies. A revised version of the model is proposed to account for the energy contained within multiple wave frequencies from the power spectra for the mechanically generated irregular waves. The revised model shows improved results when applied to irregular wave environments.

Keywords