Human cytomegalovirus forms phase-separated compartments at viral genomes to facilitate viral replication
Enrico Caragliano,
Stefano Bonazza,
Giada Frascaroli,
Jiajia Tang,
Timothy K. Soh,
Kay Grünewald,
Jens B. Bosse,
Wolfram Brune
Affiliations
Enrico Caragliano
Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; Centre for Structural Systems Biology, 22607 Hamburg, Germany; Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
Stefano Bonazza
Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany
Giada Frascaroli
Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany
Jiajia Tang
Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany
Timothy K. Soh
Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; Centre for Structural Systems Biology, 22607 Hamburg, Germany; Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
Kay Grünewald
Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; Centre for Structural Systems Biology, 22607 Hamburg, Germany; Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
Jens B. Bosse
Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; Centre for Structural Systems Biology, 22607 Hamburg, Germany; Institute of Virology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany; Corresponding author
Wolfram Brune
Leibniz Institute for Experimental Virology (HPI), 20251 Hamburg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany; Corresponding author
Summary: Human cytomegalovirus (HCMV) replicates its DNA genome in specialized replication compartments (RCs) in the host cell nucleus. These membrane-less organelles originate as spherical structures and grow in size over time. However, the mechanism of RC biogenesis has remained understudied. Using live-cell imaging and photo-oligomerization, we show that a central component of RCs, the UL112-113 proteins, undergo liquid-liquid phase separation (LLPS) to form RCs in the nucleus. We show that the self-interacting domain and large intrinsically disordered regions of UL112-113 are required for LLPS. Importantly, viral DNA induces local clustering of these proteins and lowers the threshold for phase separation. The formation of phase-separated compartments around viral genomes is necessary to recruit the viral DNA polymerase for viral genome replication. Thus, HCMV uses its UL112-113 proteins to generate RCs around viral genomes by LLPS to ensure the formation of a pro-replicative environment.