Forum of Mathematics, Sigma (Jan 2018)

POINTWISE CONVERGENCE OF SCHRÖDINGER SOLUTIONS AND MULTILINEAR REFINED STRICHARTZ ESTIMATES

  • XIUMIN DU,
  • LARRY GUTH,
  • XIAOCHUN LI,
  • RUIXIANG ZHANG

DOI
https://doi.org/10.1017/fms.2018.11
Journal volume & issue
Vol. 6

Abstract

Read online

We obtain partial improvement toward the pointwise convergence problem of Schrödinger solutions, in the general setting of fractal measure. In particular, we show that, for $n\geqslant 3$, $\lim _{t\rightarrow 0}e^{it\unicode[STIX]{x1D6E5}}f(x)$$=f(x)$ almost everywhere with respect to Lebesgue measure for all $f\in H^{s}(\mathbb{R}^{n})$ provided that $s>(n+1)/2(n+2)$. The proof uses linear refined Strichartz estimates. We also prove a multilinear refined Strichartz using decoupling and multilinear Kakeya.

Keywords