Results in Engineering (Mar 2023)
Could we use metallic wood for bone tissue engineering applications?
Abstract
The principal purpose of tissue engineering is to stimulate the injured or unhealthy tissues to revive their primary function through the simultaneous use of chemical agents, cells, and biocompatible materials. One of the most recently used cellular materials is metallic wood, which possesses the strength of titanium as well as the density of natural materials, such as wood and water. Aside from its density, its cellular structure is also efficient, in which some parts are thick and dense, which hold the structure, and others are porous, which supports biological functions. This material has been predicted to be effective in bone tissue engineering in addition to several industrial applications as a result of its essential features, including its cellular structure, outstanding biocompatibility, mechanical performance, nanostructure lattice, high strength, corrosion resistance, and shape memory behavior. Thus, it is predicted that bone grafts made from metallic wood would have an acceptable rate of cell attachment, cell survival, vascularization, and new bone formation. The current review discusses the potential of utilizing metallic wood in bone tissue engineering applications, illustrating its coating and manufacturing capabilities.