International Journal of Plant Biology (Jan 2010)

Identification of a differentially expressed thymidine kinase gene related to tapping panel dryness syndrome in the rubber tree (Hevea brasiliensis Muell. Arg.) by random amplified polymorphic DNA screening

  • Arjunan Thulaseedharan,
  • Padmanabhan Priya,
  • Natesan Geetha,
  • Perumal Venkatachalam

DOI
https://doi.org/10.4081/1126
Journal volume & issue
Vol. 1, no. 1
pp. e6 – e6

Abstract

Read online

Tapping panel dryness (TPD) syndrome is one of the latex yield affecting factors in the rubber tree (Hevea brasiliensis Mull. Arg.). Therefore, identification of a DNA marker will be highly useful for screening progenies in breeding programs. The major goal of this study was to detect genetic variations and/or identification of gene fragments among 37 Hevea clones by the random amplified polymorphic DNA “fingerprinting” technique. Different levels of DNA polymorphism were detected with various primers and a distinct polymorphic band (2.0 kb) was obtained with OPA-17 primer. It was cloned into a plasmid vector for further sequence characterization and the nucleotide sequence shows homology with a novel putative plant thymidine kinase (TK) gene, designated as HbTK (Hevea brasiliensis thymidine kinase; GenBank accession number AY130829). The protein HbTK has 67%, 65%, 64%, and 63% similarity to TK genes of Medicago, Oryza, Arabidopsis, and Lyco- persicon, respectively, and it was highly conserved in all species analyzed. The predicted amino acid sequence contained conserved domains of TK proteins in the C-terminal half. Southern blot analysis indicated that HbTK is one of the members of a small gene family. Northern blot results revealed that the expression of the HbTK gene was up-regulated in mature bark tissues of the healthy tree while it was down-regulated in the TPD-affected one. These results suggest that this gene may play important roles in maintaining active nucleotide metabolism during cell division at the tapped site of bark tissues in the healthy tree under stress (tapping) conditions for normal latex biosynthesis.

Keywords