International Journal of Molecular Sciences (Nov 2023)

Ephexin3/ARHGEF5 Together with Cell Migration Signaling Partners within the Tumor Microenvironment Define Prognostic Transcriptional Signatures in Multiple Cancer Types

  • Dante Gustavo Juan-Guadarrama,
  • Yarely Mabell Beltrán-Navarro,
  • Guadalupe Reyes-Cruz,
  • José Vázquez-Prado

DOI
https://doi.org/10.3390/ijms242216427
Journal volume & issue
Vol. 24, no. 22
p. 16427

Abstract

Read online

Cancer cell migration involves a repertoire of signaling proteins that lead cytoskeleton reorganization as a critical step in metastatic dissemination. RhoGEFs are multidomain effectors that integrate signaling inputs to activate the molecular switches that orchestrate actin cytoskeleton reorganization. Ephexins, a group of five RhoGEFs, play oncogenic roles in invasive and metastatic cancer, leading to a mechanistic hypothesis about their function as signaling nodes assembling functional complexes that guide cancer cell migration. To identify clinically significant Ephexin signaling partners, we applied three systematic data mining strategies, based on the screening of essential Ephexins in multiple cancer cell lines and the identification of coexpressed signaling partners in the TCGA cancer patient datasets. Based on the domain architecture of encoded proteins and gene ontology criteria, we selected Ephexin signaling partners with a role in cytoskeletal reorganization and cell migration. We focused on Ephexin3/ARHGEF5, identified as an essential gene in multiple cancer cell types. Based on significant coexpression data and coessentiality, the signaling repertoire that accompanies Ephexin3 corresponded to three groups: pan-cancer, cancer-specific and coessential. To further select the Ephexin3 signaling partners likely to be relevant in clinical settings, we first identified those whose high expression was statistical linked to shorter patient survival. The resulting Ephexin3 transcriptional signatures represent significant accumulated risk, predictive of shorter survival, in 17 cancer types, including PAAD, LUAD, LGG, OSC, AML, KIRC, THYM, BLCA, LIHC and UCEC. The signaling landscape that accompanies Ephexin3 in various cancer types included the tyrosine kinase receptor MET and the tyrosine phosphatase receptor PTPRF, the serine/threonine kinases MARK2 and PAK6, the Rho GTPases RHOD, RHOF and RAC1, and the cytoskeletal regulator DIAHP1. Our findings set the basis to further explore the role of Ephexin3/ARHGEF5 as an essential effector and signaling hub in cancer cell migration.

Keywords