IEEE Access (Jan 2017)

DNN Filter Bank Cepstral Coefficients for Spoofing Detection

  • Hong Yu,
  • Zheng-Hua Tan,
  • Yiming Zhang,
  • Zhanyu Ma,
  • Jun Guo

DOI
https://doi.org/10.1109/ACCESS.2017.2687041
Journal volume & issue
Vol. 5
pp. 4779 – 4787

Abstract

Read online

With the development of speech synthesis techniques, automatic speaker verification systems face the serious challenge of spoofing attack. In order to improve the reliability of speaker verification systems, we develop a new filter bank-based cepstral feature, deep neural network (DNN) filter bank cepstral coefficients, to distinguish between natural and spoofed speech. The DNN filter bank is automatically generated by training a filter bank neural network (FBNN) using natural and synthetic speech. By adding restrictions on the training rules, the learned weight matrix of FBNN is band limited and sorted by frequency, similar to the normal filter bank. Unlike the manually designed filter bank, the learned filter bank has different filter shapes in different channels, which can capture the differences between natural and synthetic speech more effectively. The experimental results on the ASVspoof 2015 database show that the Gaussian mixture model maximum-likelihood classifier trained by the new feature performs better than the state-of-the-art linear frequency triangle filter bank cepstral coefficients-based classifier, especially on detecting unknown attacks.

Keywords