Quantum (May 2021)

Designing locally maximally entangled quantum states with arbitrary local symmetries

  • Oskar Słowik,
  • Adam Sawicki,
  • Tomasz Maciążek

DOI
https://doi.org/10.22331/q-2021-05-01-450
Journal volume & issue
Vol. 5
p. 450

Abstract

Read online

One of the key ingredients of many LOCC protocols in quantum information is a multiparticle (locally) maximally entangled quantum state, aka a critical state, that possesses local symmetries. We show how to design critical states with arbitrarily large local unitary symmetry. We explain that such states can be realised in a quantum system of distinguishable traps with bosons or fermions occupying a finite number of modes. Then, local symmetries of the designed quantum state are equal to the unitary group of local mode operations acting diagonally on all traps. Therefore, such a group of symmetries is naturally protected against errors that occur in a physical realisation of mode operators. We also link our results with the existence of so-called strictly semistable states with particular asymptotic diagonal symmetries. Our main technical result states that the $N$th tensor power of any irreducible representation of $\mathrm{SU}(N)$ contains a copy of the trivial representation. This is established via a direct combinatorial analysis of Littlewood-Richardson rules utilising certain combinatorial objects which we call telescopes.