AI (Jul 2025)
Advancements in Semi-Supervised Deep Learning for Brain Tumor Segmentation in MRI: A Literature Review
Abstract
For automatic tumor segmentation in magnetic resonance imaging (MRI), deep learning offers very powerful technical support with significant results. However, the success of supervised learning is strongly dependent on the quantity and accuracy of labeled training data, which is challenging to acquire in MRI. Semi-supervised learning approaches have arisen to tackle this difficulty, yielding comparable brain tumor segmentation outcomes with fewer labeled samples. This literature review explores key semi-supervised learning techniques for medical image segmentation, including pseudo-labeling, consistency regularization, generative adversarial networks, contrastive learning, and holistic methods. We specifically examine the application of these approaches in brain tumor MRI segmentation. Our findings suggest that semi-supervised learning can outperform traditional supervised methods by providing more effective guidance, thereby enhancing the potential for clinical computer-aided diagnosis. This literature review serves as a comprehensive introduction to semi-supervised learning in tumor MRI segmentation, including glioma segmentation, offering valuable insights and a comparative analysis of current methods for researchers in the field.
Keywords