Diagnostics (Dec 2021)

Unseen Artificial Intelligence—Deep Learning Paradigm for Segmentation of Low Atherosclerotic Plaque in Carotid Ultrasound: A Multicenter Cardiovascular Study

  • Pankaj K. Jain,
  • Neeraj Sharma,
  • Luca Saba,
  • Kosmas I. Paraskevas,
  • Mandeep K. Kalra,
  • Amer Johri,
  • John R. Laird,
  • Andrew N. Nicolaides,
  • Jasjit S. Suri

DOI
https://doi.org/10.3390/diagnostics11122257
Journal volume & issue
Vol. 11, no. 12
p. 2257

Abstract

Read online

Background: The early detection of carotid wall plaque is recommended in the prevention of cardiovascular disease (CVD) in moderate-risk patients. Previous techniques for B-mode carotid atherosclerotic wall plaque segmentation used artificial intelligence (AI) methods on monoethnic databases, where training and testing are from the “same” ethnic group (“Seen AI”). Therefore, the versatility of the system is questionable. This is the first study of its kind that uses the “Unseen AI” paradigm where training and testing are from “different” ethnic groups. We hypothesized that deep learning (DL) models should perform in 10% proximity between “Unseen AI” and “Seen AI”. Methodology: Two cohorts from multi-ethnic groups (330 Japanese and 300 Hong Kong (HK)) were used for the validation of our hypothesis. We used a four-layered UNet architecture for the segmentation of the atherosclerotic wall with low plaque. “Unseen AI” (training: Japanese, testing: HK or vice versa) and “Seen AI” experiments (single ethnicity or mixed ethnicity) were performed. Evaluation was conducted by measuring the wall plaque area. Statistical tests were conducted for its stability and reliability. Results: When using the UNet DL architecture, the “Unseen AI” pair one (Training: 330 Japanese and Testing: 300 HK), the mean accuracy, dice-similarity, and correlation-coefficient were 98.55, 78.38, and 0.80 (p p p < 0.0001), respectively. Conclusion: We demonstrated that “Unseen AI” was in close proximity (<10%) to “Seen AI”, validating our DL model for low atherosclerotic wall plaque segmentation. The online system runs < 1 s.

Keywords