Synthetic and Systems Biotechnology (Sep 2020)
Redesigning transcription factor Cre1 for alleviating carbon catabolite repression in Trichoderma reesei
Abstract
Carbon catabolite repression (CCR), which is mainly mediated by Cre1 and triggered by glucose, leads to a decrease in cellulase production in Trichoderma reesei. Many studies have focused on modifying Cre1 for alleviating CCR. Based on the homologous alignment of CreA from wild-type Penicillium oxalicum 114–2 (Po-0) and cellulase hyperproducer JUA10-1(Po-1), we constructed a C-terminus substitution strain—Po-2—with decreased transcriptional levels of cellulase and enhanced CCR. Results revealed that the C-terminal domain of CreAPo−1 plays an important role in alleviating CCR. Furthermore, we replaced the C-terminus of Cre1 with that of CreAPo−1 in T. reesei (Tr-0) and generated Tr-1. As a control, the C-terminus of Cre1 was truncated and Tr-2 was generated. The transcriptional profiles of these transformants revealed that the C-terminal chimera greatly improves cellulase transcription in the presence of glucose and thus upregulates cellulase in the presence of glucose and weakens CCR, consistent with truncating the C-terminus of Cre1 in Tr-0. Therefore, we propose constructing a C-terminal chimera as a new strategy to improve cellulase production and alleviate CCR in the presence of glucose.