Poultry Science (May 2020)

Effects of incubation and chick rearing on intestinal morphology, digestive enzyme activities, and mRNA expression of nutrient transporter genes in the pigeon (Columba livia) under artificial farming conditions

  • P. Xie,
  • X.P. Wan,
  • C.X. Yang,
  • J.G. Zhu,
  • Y.G. Xu,
  • D.Q. Gong

Journal volume & issue
Vol. 99, no. 5
pp. 2785 – 2797

Abstract

Read online

The present study investigated the changes in morphology, enzyme activities in the pancreas and mucosa, and nutrient transporter gene expression in the duodenum and jejunum in male and female pigeons during the incubation and chick-rearing periods. Forty-two pairs of White King pigeons with 2 fertile eggs per pair were randomly divided into 7 groups by different breeding stages. The crypt depth of the duodenum and jejunum reached the peak at day 1 (R1) and day 7 (R7) of chick rearing, respectively. The jejunum surface area increased to a maximum value at R1. Amylase activity in the pancreas decreased to the lowest value at R1, whereas trypsin and lipase activities peaked at 17 D of incubation (I17) and R7, respectively. In male pigeons, mucosal Na+-K+-ATPase activity in the duodenum and jejunum was the highest at R15 and it was at I17 in female pigeons. Jejunum sucrose activity in female pigeons was higher at I4 than that at I17 (P < 0.05). The gene expression of FAT/CD36 and I-FABP in the duodenum gradually increased and then declined in the late chick-rearing period. SGLT1 in the jejunum decreased to a lower level at I17 and R25 in male pigeons (P < 0.05). GLUT2 expression in female duodenum and male jejunum decreased to a lower value at I17 compared with that at R15 (P < 0.05). In the late of incubation (from I10 to I17), expression of duodenum CAT1, B0AT1, and PepT1 and jejunum CAT1, ASCT1, and PepT1 in female pigeons was significantly reduced (P < 0.05), whereas opposite results were found in male jejunum CAT1 and duodenum ASCT1. In conclusion, variations of intestinal morphology, activities of pancreatic and mucosal enzymes, and gene expression of nutrient transporters during incubation and chick-rearing periods, underlying potential changes of digestive and absorptive function and intestinal adaptation with sexual effects, may represent a complicated response to stimuli of different breeding stages.

Keywords