In Autumn 2020, DOAJ will be relaunching with a new website with updated functionality, improved search, and a simplified application form. More information is available on our blog. Our API is also changing.

Hide this message

MicroRNA profiling in intraocular medulloepitheliomas.

PLoS ONE. 2015;10(3):e0121706 DOI 10.1371/journal.pone.0121706

 

Journal Homepage

Journal Title: PLoS ONE

ISSN: 1932-6203 (Online)

Publisher: Public Library of Science (PLoS)

LCC Subject Category: Medicine | Science

Country of publisher: United States

Language of fulltext: English

Full-text formats available: PDF, HTML, XML

 

AUTHORS


Deepak P Edward

Hind Alkatan

Qundeel Rafiq

Charles Eberhart

Saleh Al Mesfer

Nicola Ghazi

Leen Al Safieh

Altaf A Kondkar

Khaled K Abu Amero

EDITORIAL INFORMATION

Peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 24 weeks

 

Abstract | Full Text

To study the differential expression of microRNA (miRNA) profiles between intraocular medulloepithelioma (ME) and normal control tissue (CT).Total RNA was extracted from formalin fixed paraffin embedded (FFPE) intraocular ME (n=7) and from age matched ciliary body controls (n=8). The clinical history and phenotype was recorded. MiRNA profiles were determined using the Affymetrix GeneChip miRNA Arrays analyzed using expression console 1.3 software. Validation of significantly dysregulated miRNA was confirmed by quantitative real-time PCR. The web-based DNA Intelligent Analysis (DIANA)-miRPath v2.0 was used to perform enrichment analysis of differentially expressed (DE) miRNA gene targets in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway.The pathologic evaluation revealed one benign (benign non-teratoid, n=1) and six malignant tumors (malignant teratoid, n=2; malignant non-teratoid, n = 4). A total of 88 miRNAs were upregulated and 43 miRNAs were downregulated significantly (P<0.05) in the tumor specimens. Many of these significantly dysregulated miRNAs were known to play various roles in carcinogenesis and tumor behavior. RT-PCR validated three significantly upregulated miRNAs and three significantly downregulated miRNAs namely miR-217, miR-216a, miR-216b, miR-146a, miR-509-3p and miR-211. Many DE miRNAs that were significant in ME tumors showed dysregulation in retinoblastoma, glioblastoma, and precursor, normal and reactive human cartilage. Enriched pathway analysis suggested a significant association of upregulated miRNAs with 15 pathways involved in prion disease and several types of cancer. The pathways involving significantly downregulated miRNAs included the toll-like receptor (TLR) (p<4.36E-16) and Nuclear Factor kappa B (NF-κB) signaling pathways (p<9.00E-06).We report significantly dysregulated miRNAs in intraocular ME tumors, which exhibited abnormal profiles in other cancers as well such as retinoblastoma and glioblastoma. Pathway analysis of all dysregulated miRNAs shared commonalities with other cancer pathways.