Developmental Cognitive Neuroscience (Aug 2024)

Developmental differences in striatal recruitment by reward prospects as a function of attentional demand

  • Chelsea Sawyers,
  • Lisa K. Straub,
  • Joseph Gauntlett,
  • James M. Bjork

Journal volume & issue
Vol. 68
p. 101412

Abstract

Read online

Adolescent risk-taking has been attributed to earlier-developing motivational neurocircuitry that is poorly controlled by immature executive-control neurocircuitry. Functional magnetic resonance imaging findings of increased ventral striatum (VS) recruitment by reward prospects in adolescents compared to adults support this theory. Other studies found blunted VS recruitment by reward-predictive cues in adolescents compared to adults. Task features may explain this discrepancy but have never been systematically explored. Adolescents and adults performed a novel reward task that holds constant the expected value of all rewards but varies whether rewards are dependent on vigilance-intensive responding versus making a lucky choice during a relaxed response window. We examined group by sub-task contrast differences in activation of VS and more motoric regions of striatum in response to anticipatory cues. Reward anticipation in both task conditions activated portions of striatum in both groups. In voxel-wise comparison, adults showed greater anticipatory recruitment of VS in trials involving choice during a relaxed time window, not in the more vigilance-demanding trials as hypothesized. In accord with our hypotheses, however, adults showed greater activation in dorsal striatum and putamen volumes of interest during reward anticipation under vigilance-demanding conditions. Following trial outcome notifications, adolescents showed greater activation of the VS during reward notification but lower activation during loss notification. These data extend findings of cross-sectional age-group differences in incentive-anticipatory recruitment of striatum, by demonstrating in adults relatively greater recruitment of motor effector regions of striatum by attentional and motor demands.

Keywords