Chengshi guidao jiaotong yanjiu (Jan 2024)
Design and Optimization Experimental Verification of Heat Dissipation System for High-power High-frequency Auxiliary Converters in Metro Trains
Abstract
[Objective] With the high-degree integration of high-power auxiliary converters in metro trains, the demand for heat dissipation is rising significantly, necessitating the proposal of a new heat dissipation system design scheme. [Method] Through a series of forward designs involving power loss calculation, fan type selection, and heat dissipation duct layout, the rationality of the thermal design is validated by combining the simulation. [Result & Conclusion] Simulation results indicate that under the fault condition of a single auxiliary converter, uneven flow distribution in the intermediate chamber leads to elevated transformer temperature, posing a risk of thermal inefficiency. On this basis, the duct structure is optimized, and the simulation confirms a more uniform flow distribution in the duct, and a significant reduction in transformer temperature rise within the permissible operating temperature range, indicating that the optimized heat dissipation system meets application requirements. To validate the theoretical design, a prototype temperature rise test is conducted to compare the simulation and prototype test results. Under single and dual full-load working conditions, the temperature rise of key components and the temperature difference compared to the simulation are controlled within 5°C, both within the specified application range. This indicates the rationality of the duct heat dissipation system design. A new converter heat dissipation system and cabinet structure are proposed through forward optimization design, and prototype testing validates the effectiveness of the simulation analysis. This approach substantially shortens the prototype development cycle, enhances market responsiveness, and provides a methodology and direction for the design and optimization of high-power high-frequency auxiliary converters.
Keywords