Synthesis of Co@CoO/C by micro-tube method and their electrochemical performances
Jun Du,
Binbin Jin,
Lang Liu,
Ling Chen,
Xing Fan,
Bingxin Lei,
Liying Liang
Affiliations
Jun Du
School of Materials and Environment, Guangxi Minzu University, Nanning, 530000, PR China; Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, PR China
Binbin Jin
School of Materials and Environment, Guangxi Minzu University, Nanning, 530000, PR China; Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, PR China
Lang Liu
School of Materials and Environment, Guangxi Minzu University, Nanning, 530000, PR China; Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, PR China
Ling Chen
School of Materials and Environment, Guangxi Minzu University, Nanning, 530000, PR China; Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, PR China
Xing Fan
School of Materials and Environment, Guangxi Minzu University, Nanning, 530000, PR China; Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, PR China
Bingxin Lei
School of Materials and Environment, Guangxi Minzu University, Nanning, 530000, PR China; Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, PR China
Liying Liang
School of Materials and Environment, Guangxi Minzu University, Nanning, 530000, PR China; Guangxi Colleges and Universities Key Laboratory of Environmental-Friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530105, PR China; Guangxi Research Institute of Chemical Industry Co., Ltd, Nanning, 530001, PR China; Corresponding author. School of Materials and Environment, Guangxi Minzu University, Nanning, 530000, PR China.
Lithium-ion batteries (LIBs) are promising secondary batteries that are widely used in portable electronic devices, electric vehicles and smart grids. The design and synthesis of high-performance electrode materials play a crucial role in achieving lithium-ion batteries with high energy density, prolonged cycle life, and superior safety. CoO has attracted significant attention as a negative electrode material for lithium-ion batteries due to its high theoretical capacity and abundant resources. However, its limited conductivity and suboptimal cycling performance impede its potential applications. The study proposes a novel micro-tube reaction method for the synthesis of Co@CoO/C, utilizing Kapok fiber as a template with a special hollow structure. The microstructure and composition of the samples were characterized using X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). After conducting electrochemical performance tests, it was discovered that at a current density of 100 mA/g and within the range of 0.01–3.0 V for 50 charge and discharge cycles. Co@CoO/C composite negative electrode exhibits a reversible lithium insertion specific capacity of 499.8 mAh/g and keep a discharge capacity retention rate of 97.6 %. The greatly improved lithium storage and stability performance of Co@CoO/C composite anode is mainly attributed to the synergistic effect between Co@CoO nanoparticles and the kapok carbon microtubule structure.