Sensors (May 2024)

UAV Path Optimization for Angle-Only Self-Localization and Target Tracking Based on the Bayesian Fisher Information Matrix

  • Kutluyil Dogancay,
  • Hatem Hmam

DOI
https://doi.org/10.3390/s24103120
Journal volume & issue
Vol. 24, no. 10
p. 3120

Abstract

Read online

In this paper, new path optimization algorithms are developed for uncrewed aerial vehicle (UAV) self-localization and target tracking, exploiting beacon (landmark) bearings and angle-of-arrival (AOA) measurements from a manoeuvring target. To account for time-varying rotations in the local UAV coordinates with respect to the global Cartesian coordinate system, the unknown orientation angle of the UAV is also estimated jointly with its location from the beacon bearings. This is critically important, as orientation errors can significantly degrade the self-localization performance. The joint self-localization and target tracking problem is formulated as a Kalman filtering problem with an augmented state vector that includes all the unknown parameters and a measurement vector of beacon bearings and target AOA measurements. This formulation encompasses applications where Global Navigation Satellite System (GNSS)-based self-localization is not available or reliable, and only beacons or landmarks can be utilized for UAV self-localization. An optimal UAV path is determined from the optimization of the Bayesian Fisher information matrix by means of A- and D-optimality criteria. The performance of this approach at different measurement noise levels is investigated. A modified closed-form projection algorithm based on a previous work is also proposed to achieve optimal UAV paths. The performance of the developed UAV path optimization algorithms is demonstrated with extensive simulation examples.

Keywords