Bioremediation of PAHs and VOCs: Advances in clay mineral–microbial interaction

Environment International. 2015;85:168-181

 

Journal Homepage

Journal Title: Environment International

ISSN: 0160-4120 (Print)

Publisher: Elsevier

LCC Subject Category: Geography. Anthropology. Recreation: Environmental sciences

Country of publisher: United Kingdom

Language of fulltext: English

Full-text formats available: PDF, HTML

 

AUTHORS

Bhabananda Biswas (Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW, Australia)
Binoy Sarkar (Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW, Australia)
Ruhaida Rusmin (Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Faculty of Applied Science, Universiti Teknologi MARA Negeri Sembilan, Kuala Pilah 72000, Malaysia)
Ravi Naidu (Future Industries Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW, Australia; Global Centre for Environmental Remediation, ATC Building, University of Newcastle, Callaghan, NSW, Australia; Corresponding author at: University of South Australia, Mawson Lakes Campus, SA 5095, Australia.)

EDITORIAL INFORMATION

Blind peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 12 weeks

 

Abstract | Full Text

Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons. Keywords: Clay and modified clay minerals, Clay-microbial interaction, PAHs and VOCs, Biodegradation