Scientific Reports (Jun 2023)
Temperature contributes to host specialization of coffee wilt disease (Fusarium xylarioides) on arabica and robusta coffee crops
Abstract
Abstract Coffee wilt disease, caused by the fungus Fusarium xylarioides, is a vascular wilt disease that has affected coffee production in sub-Saharan Africa over the past century. Today, the disease has two host-specific populations specialising on arabica and robusta coffee crops, which grow at high and low altitude, respectively. Here we test whether adaptation to different temperatures contributes to specialisation of the fungi on each crop. Firstly, climate models show that the severity of the arabica and robusta populations of coffee wilt disease correlates with temperature. The robusta population shows higher peak severity than the arabica population overall, but the latter has greater cold tolerance. Secondly, growth assays of thermal performance of fungal strains in vitro show that, while robusta strains grow faster than arabicas at intermediate temperatures, the arabica strains have higher sporulation and spore germination rates at temperatures below 15ºC. The match between environmental patterns of severity in nature with thermal performance of fungal cultures in the laboratory supports a role for temperature adaptation in specialisation on arabica and robusta coffee. Extrapolating our temperature-models to future climate change predicts that disease severity could decline on average due to increased temperature but could increase in some coffee-growing regions.