Journal of Marine Science and Engineering (Sep 2022)

Consequence Analysis of Accidental LNG Release on the Collided Structure of 500 cbm LNG Bunkering Ship

  • Haris Nubli,
  • Jung-Min Sohn,
  • Dongho Jung

DOI
https://doi.org/10.3390/jmse10101378
Journal volume & issue
Vol. 10, no. 10
p. 1378

Abstract

Read online

The growing demand for liquefied natural gas (LNG)-fueled ships necessitates the establishment of an LNG bunkering facility. Ship-to-ship (STS) is one of the most practical forms of LNG bunkering systems. Although there are benefits to the LNG bunkering of ships, risk and safety issues are a concern due to the volatile cargo. Ship collision could result in accidental LNG release. The purpose of this study was to build LNG leakage scenarios, establish critical zones based on gas concentrations, and estimate the temperature reduction in a bunkering ship’s structure resulting from the use of cryogenic fluid. The condition of a target ship’s structure, both intact and when damaged due to collision, was considered. Leak size, leak direction, leak position, release rate, and reservoir pressure were included as leak parameters, and environmental parameters, such as the wind direction, wind speed, and ambient temperature, were also included. The release duration was set based on the shutdown duration of the emergency shutdown valve (ESD). A total of 72 leakage scenarios were generated for the main CFD analysis. Convergence tests were conducted to determine the appropriate grid and iteration numbers for a computational fluid dynamics (CFD) simulation. The gas dispersion characteristics and the cryogenic flow impact on the LNG bunkering ship’s structure are discussed through a parametric study.

Keywords