Animals (Oct 2019)

In Vivo Toxicity and In Vitro Solubility Assessment of Pre-Treated Struvite as a Potential Alternative Phosphorus Source in Animal Feed

  • Soomin Shim,
  • Seunggun Won,
  • Arif Reza,
  • Seungsoo Kim,
  • Sungil Ahn,
  • Baedong Jung,
  • Byungil Yoon,
  • Changsix Ra

DOI
https://doi.org/10.3390/ani9100785
Journal volume & issue
Vol. 9, no. 10
p. 785

Abstract

Read online

Apart from using as fertilizer for plants, the application of struvite may be expanded to animal feed industries through proper pre-treatment. This study aimed to investigate the safety and efficacy of using pre-treated struvite (microwave irradiated struvite (MS) and incinerated struvite (IS)) in animal feeds. For safety assessment, an in vivo toxicity experiment using thirty female Sprague Dawley rats (average body weight (BW) of 200 ± 10 g) was conducted. The rats were randomly divided into five groups, including a control. Based on the BW, MS and IS were applied daily by oral administration with 1 and 10 mg kg−1-BW (MS1 and MS10; IS1 and IS10) using dimethyl sulfoxide (DMSO) as a vehicle. A series of jar tests were conducted for four hours to check the solubility of the MS and IS at different pH (pH 2, 4, 5, 6, and 7) and compared to a commercial P source (monocalcium phosphate, MCP, control). The toxicity experiment results showed no significant differences among the treatments in BW and organ (liver, kidney, heart, and lung) weight of rats (p > 0.05). There were no adverse effects on blood parameters and the histopathological examination showed no inflammation in the organ tissues in MS and IS treated groups compared to the control. In an in vitro solubility test, no significant difference was observed in ortho-phosphate (O-P) solubility from the MCP and MS at pH 2 and 4 (p > 0.05), while O-P solubility from MS at pH 5 to 7 was higher than MCP and found to be significantly different (p < 0.05). O-P solubility from IS was the lowest among the treatments and significantly different from MCP and MS in all the experiments (p < 0.05). The results of this study not only suggest that the struvite pre-treated as MS could be a potential alternative source of P in animal feed but also motivate further studies with more stringent designs to better examine the potential of struvite application in diverse fields.

Keywords