Satellite Navigation (Nov 2022)

Refining the ERA5-based global model for vertical adjustment of zenith tropospheric delay

  • Ge Zhu,
  • Liangke Huang,
  • Yunzhen Yang,
  • Junyu Li,
  • Lv Zhou,
  • Lilong Liu

DOI
https://doi.org/10.1186/s43020-022-00088-w
Journal volume & issue
Vol. 3, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Tropospheric delay is an important factor affecting high precision Global Navigation Satellite System (GNSS) positioning and also the basic data for GNSS atmospheric research. However, the existing tropospheric delay models have some problems, such as only a single function used for the entire atmosphere. In this paper, an ERA5-based (the fifth generation of European Centre for Medium-Range Weather Forecasts Reanalysis) global model for vertical adjustment of Zenith Tropospheric Delay (ZTD) using a piecewise function is developed. The ZTD data at 611 radiosonde stations and the MERRA-2 (second Modern-Era Retrospective analysis for Research and Applications) atmospheric reanalysis data were used to validate the model reliability. The Global Zenith Tropospheric Delay Piecewise (GZTD-P) model has excellent performance compared with the Global Pressure and Temperature (GPT3) model. Validated at radiosonde stations, the performance of the GZTD-P model was improved by 0.96 cm (23%) relative to the GPT3 model. Validated with MERRA-2 data, the quality of the GZTD-P model is improved by 1.8 cm (50%) compared to the GPT3 model, showing better accuracy and stability. The ZTD vertical adjustment model with different resolutions was established to enrich the model's applicability and speed up the process of tropospheric delay calculation. By providing model parameters with different resolutions, users can choose the appropriate model according to their applications.

Keywords