Remote Sensing (Jan 2019)

Superpixel-Guided Layer-Wise Embedding CNN for Remote Sensing Image Classification

  • Han Liu,
  • Jun Li,
  • Lin He,
  • Yu Wang

DOI
https://doi.org/10.3390/rs11020174
Journal volume & issue
Vol. 11, no. 2
p. 174

Abstract

Read online

Irregular spatial dependency is one of the major characteristics of remote sensing images, which brings about challenges for classification tasks. Deep supervised models such as convolutional neural networks (CNNs) have shown great capacity for remote sensing image classification. However, they generally require a huge labeled training set for the fine tuning of a deep neural network. To handle the irregular spatial dependency of remote sensing images and mitigate the conflict between limited labeled samples and training demand, we design a superpixel-guided layer-wise embedding CNN (SLE-CNN) for remote sensing image classification, which can efficiently exploit the information from both labeled and unlabeled samples. With the superpixel-guided sampling strategy for unlabeled samples, we can achieve an automatic determination of the neighborhood covering for a spatial dependency system and thus adapting to real scenes of remote sensing images. In the designed network, two types of loss costs are combined for the training of CNN, i.e., supervised cross entropy and unsupervised reconstruction cost on both labeled and unlabeled samples, respectively. Our experimental results are conducted with three types of remote sensing data, including hyperspectral, multispectral, and synthetic aperture radar (SAR) images. The designed SLE-CNN achieves excellent classification performance in all cases with a limited labeled training set, suggesting its good potential for remote sensing image classification.

Keywords