International Journal of Electrical Power & Energy Systems (Dec 2024)

Two-stage multi-objective optimal dispatch of hybrid power generation system for ramp stress mitigation

  • Kunpeng Zhang,
  • Tianhao Liu,
  • Yutian Liu,
  • Huan Ma,
  • Linlin Ma

Journal volume & issue
Vol. 163
p. 110328

Abstract

Read online

As the penetration of renewable energy continues to rise, the occurrence of ramp events in renewable generation poses significant challenges to power system security and efficient renewable energy utilization. To optimize the power allocation of hybrid energy storage systems (HESS) and enhance adjustable reserves to mitigate ramp events, a day-ahead and intraday two-stage multi-objective optimal dispatch strategy is proposed for hybrid power generation systems containing wind, photovoltaic, battery and hydrogen energy storage system (ESS). First, a novel optimization objective is presented to regulate the response priorities of different ESS by minimizing the energy loss, and balance the conservatism by a penalty factor. Then, a two-stage optimal dispatch model is proposed including two sub-models. The day-ahead multi-objective dispatch model considers generation plan, available storage capacity and energy loss, which identifies time slots when adjustable reserves is insufficient; the intraday dispatch model dynamically adjusts penalty factor for each time slot based on the day-ahead results to enhance adjustable reserves in advance. This combination of day-ahead and intraday dispatch models improves the farsightedness and computational efficiency. Finally, a non-isometric scaling method is presented to improve the distribution of Pareto optimal solutions for the non-dominated sorting genetic algorithm III (NSGA-III). Simulation results based on the actual data from Belgium and China demonstrate that the proposed method effectively mitigates the ramp stress and improves renewable energy utilization, with high computational efficiency and robustness to parameters.

Keywords