Remote Sensing (May 2023)

Satellite-Based Estimation of Roughness Length over Vegetated Surfaces and Its Utilization in WRF Simulations

  • Yiming Liu,
  • Chong Shen,
  • Xiaoyang Chen,
  • Yingying Hong,
  • Qi Fan,
  • Pakwai Chan,
  • Chunlin Wang,
  • Jing Lan

DOI
https://doi.org/10.3390/rs15102686
Journal volume & issue
Vol. 15, no. 10
p. 2686

Abstract

Read online

Based on morphological methods, MODIS satellite remote sensing data were used to establish a dataset of the local roughness length (Z0) of vegetation-covered surfaces in Guangdong Province. The local Z0 was used to update the mesoscale Weather Research and Forecasting (WRF) model in order to quantitatively evaluate its impact on the thermodynamic environment of vegetation-covered surfaces. The specific results are as follows: evergreen broad-leaved forests showed the largest average Z0 values at 1.27 m (spring), 1.15 m (summer), 1.03 m (autumn), and 1.15 m (winter); the average Z0 values of mixed forests ranged from 0.90 to 1.20 m; and those for cropland-covered surfaces ranged from 0.17 to 0.20 m. The Z0 values of individual vegetation coverage types all exhibited relatively high values in spring and low values in autumn, and the default Z0 corresponding to specific vegetation-covered surfaces was significantly underestimated in the WRF model. Modifying the default Z0 of surfaces underlying evergreen broad-leaved forests, mixed forests, and croplands in the model induced only relatively small changes (<1%) in their 2 m temperature, relative humidity, skin surface temperature, and the planetary boundary layer height. However, the average daily wind speed of surfaces covered by evergreen broad-leaved forests, mixed forests, and croplands was reduced by 0.48 m/s, 0.43 m/s, and 0.26 m/s, respectively, accounting for changes of 12.0%, 11.1%, and 6.5%, respectively.

Keywords