Crystals (Jul 2024)

Effect of Al-Ti-B-Er on the Microstructure and Properties of Ultrahigh-Strength Aluminum Alloy

  • Xiao Wang,
  • Zizhi Ying,
  • En Hu,
  • Juntao Ma,
  • Xiaoqing Zhang,
  • Tengfei Ma,
  • Xiaohong Wang

DOI
https://doi.org/10.3390/cryst14080695
Journal volume & issue
Vol. 14, no. 8
p. 695

Abstract

Read online

To refine the grain size and improve the mechanical properties of ultrahigh-strength aluminum alloy (Al-10Zn-1.9Mg-1.6Cu-0.12Zr), the Al-Ti-B-Er grain refiner was prepared by the melt reaction method using the aluminum melt and Al + Ti + B precursor. The results exhibit that the Al-Ti-B-Er grain refiner is mainly composed of a block TiAl3 phase, and loose agglomerated nano-sized TiB2 and Al3Er phases. The microstructure of ultrahigh-strength aluminum is significantly affected by the Al-Ti-B-Er refiner, which changes from dendrite to equiaxial grain with increasing Al-Ti-B-Er content, and the size of the eutectic phase is significantly refined. The high-efficiency refinement of Al-Ti-B-Er is due to Er promoting the uniform distribution of TiAl3 particles and the formation of loose agglomerated nano-sized TiB2 particles. The optimal addition content of Al-Ti-B-Er into ultrahigh-strength aluminum alloys is 1 wt%, whose grain size is approximately 40 µm. Additionally, the strength and ductility of ultrahigh-strength aluminum alloys are simultaneously improved by adding 1wt% Al-Ti-B-Er after the T6 treatment, reaching 756 MPa and 20%, respectively. This enhancement in strength and ductility is mainly attributed to grain refinement and the eutectic phase refinement.

Keywords