Animal Bioscience (Jun 2023)

Effect of ACADL on the differentiation of goat subcutaneous adipocyte

  • A Li,
  • YY Li,
  • QB Wuqie,
  • X Li,
  • H Zhang,
  • Y Wang,
  • YL Wang,
  • JJ Zhu,
  • YQ Lin

DOI
https://doi.org/10.5713/ab.22.0308
Journal volume & issue
Vol. 36, no. 6
pp. 829 – 839

Abstract

Read online

Objective The aim of this study was to clone the mRNA sequence of the Acyl-CoA dehydrogenase long chain (ACADL) gene of goats and explore the effect of ACADL on the differentiation of subcutaneous fat cells on this basis. Methods We obtained the ACADL gene of goats by cloning and used quantitative real-time polymerase chain reaction (qPCR) to detect the ACADL expression patterns of different goat tissues and subcutaneous fat cells at different lipid induction stages. In addition, we transfect intramuscular and subcutaneous adipocytes separately by constructing overexpressed ACADL vectors and synthesizing Si-ACADL; finally, we observed the changes in oil red stained cell levels under the microscope, and qPCR detected changes in mRNA levels. Results The results showed goat ACADL gene expressed in sebum fat. During adipocyte differentiation, ACADL gradually increased from 0 to 24 h of culture, and decreased. Overexpression of ACADL promoted differentiation of subcutaneous adipocytes in goat and inhibited their differentiation after interference. Conclusion So, we infer ACADL may have an important role in positive regulating the differentiation process in goat subcutaneous adipocytes. This study will provide basic data for further study of the role of ACADL in goat subcutaneous adipocyte differentiation and lays the foundation for final elucidating of its molecular mechanisms in regulating subcutaneous fat deposition in goats.

Keywords