Sensors (Jul 2022)

FAWPA: A FAW Attack Protection Algorithm Based on the Behavior of Blockchain Miners

  • Yang Zhang,
  • Xiaowen Lv,
  • Yourong Chen,
  • Tiaojuan Ren,
  • Changchun Yang,
  • Meng Han

DOI
https://doi.org/10.3390/s22135032
Journal volume & issue
Vol. 22, no. 13
p. 5032

Abstract

Read online

Blockchain has become one of the key techniques for the security of the industrial internet. However, the blockchain is vulnerable to FAW (Fork after Withholding) attacks. To protect the industrial internet from FAW attacks, this paper proposes a novel FAW attack protection algorithm (FAWPA) based on the behavior of blockchain miners. Firstly, FAWPA performs miner data preprocessing based on the behavior of the miners. Then, FAWPA proposes a behavioral reward and punishment mechanism and a credit scoring model to obtain cumulative credit value with the processed data. Moreover, we propose a miner’s credit classification mechanism based on fuzzy C-means (FCM), which combines the improved Aquila optimizer (AO) with strong solving ability. That is, FAWPA combines the miner’s accumulated credit value and multiple attack features as the basis for classification, and optimizes cluster center selection by simulating Aquila’s predation behavior. It can improve the solution update mechanism in different optimization stages. FAWPA can realize the rapid classification of miners’ credit levels by improving the speed of identifying malicious miners. To evaluate the protective effect of the target mining pool, FAWPA finally establishes a mining pool and miner revenue model under FAW attack. The simulation results show that FAWPA can thoroughly and efficiently detect malicious miners in the target mining pool. FAWPA also improves the recall rate and precision rate of malicious miner detection, and it improves the cumulative revenue of the target mining pool. The proposed algorithm performs better than ND, RSCM, AWRS, and ICRDS.

Keywords