IEEE Access (Jan 2020)

Methods of Controlling Lift-Off in Conductivity Invariance Phenomenon for Eddy Current Testing

  • Zhongwen Jin,
  • Yuwei Meng,
  • Rongdong Yu,
  • Ruochen Huang,
  • Mingyang Lu,
  • Hanyang Xu,
  • Xiaobai Meng,
  • Qian Zhao,
  • Zhijie Zhang,
  • Anthony Peyton,
  • Wuliang Yin

DOI
https://doi.org/10.1109/ACCESS.2020.3007216
Journal volume & issue
Vol. 8
pp. 122413 – 122421

Abstract

Read online

Previously, a conductivity invariance phenomena (CIP) has been discovered - at a certain lift-off, the inductance change of the sensor due to a test sample is immune to conductivity variations, i.e. the inductance - lift-off curve passes through a common point at a certain lift-off, termed as conductivity invariance lift-off. However, this conductivity invariance lift-off is fixed for a particular sensor setup, which is not convenient for various sample conditions. In this paper, we propose using two parameters in the coil design - the horizontal and vertical distances between the transmitter and the receiver to control the conductivity invariance lift-off. The relationship between these two parameters and the conductivity invariance lift-off is investigated by simulation and experiments and it has been found that there is an approximate linear relationship between these two parameters and the conductivity invariance lift-off. This is useful for applications where the measurements have restrictions on lift-off, e.g. uneven coating thickness which limits the range of the lift-off of probe during the measurements. Therefore, based on this relationship, it can be easier to adjust the configuration of the probe for a better inspection of the test samples.

Keywords