Cerâmica (Mar 2008)

Concretos refratários engenheirados com expansão controlada para panelas de siderurgia Engineered refractory castables with controlled expansion for molten steel ladles

  • M. A. L. Braulio,
  • D. H. Milanez,
  • E. Y. Sako,
  • M. A. M. Brito,
  • L. R. M. Bittencourt,
  • V. C. Pandolfelli

DOI
https://doi.org/10.1590/S0366-69132008000100002
Journal volume & issue
Vol. 54, no. 329
pp. 1 – 6

Abstract

Read online

A seleção de revestimentos refratários para a siderurgia é dependente de fatores termodinâmicos e microestruturais. O emprego de óxidos termodinamicamente estáveis, como a alumina e a magnésia, é fundamental para o aumento de vida útil do produto, por meio da melhoria na resistência à corrosão. Em temperaturas elevadas, estes óxidos reagem entre si, resultando na formação de espinélio, um composto quimicamente adequado para o contato com escórias agressivas. Apesar desta vantagem, um extenso controle da espinelização in-situ é necessário, uma vez que esta reação possui caráter expansivo, podendo danificar a integridade estrutural do material. Deste modo, o objetivo deste trabalho é a análise do efeito das matérias-primas que constituem a matriz de concretos espinelizados sob a expansão residual resultante. Por meio deste estudo, concretos com microestruturas engenheiradas podem ser projetados, associando benefícios como elevada resistência à corrosão, devido à presença de espinélio, e tenacificação do sistema, decorrente de um estado de compressão gerado no revestimento da panela relacionado à expansão obtida em um espaço constrito. Sendo assim, concretos refratários adequados para esta aplicação podem ser produzidos, possibilitando vantagens econômicas associadas a um superior desempenho do revestimento refratário.Thermodynamics and microstructural analysis are of utmost importance to choose the best refractory lining for molten steel containers. In order to extend ladle lining life, thermodynamically stable oxides, such as alumina and magnesia, are essential. At higher temperatures, the in-situ reaction between these two oxides leads to the formation of spinel, which has an outstanding corrosion resistance. Due to this reaction, alumina-magnesia castables are liable to a great volume expansion. Because of this, controlling the spinel formation is fundamental to keep the integrity of the material. The extent to which this reaction affects the properties of these castables depends on the matrix raw materials. Considering this aspect, the aim of this study is to design a residual expansion based on previously engineered microstructure. Consequently, the association of chemical resistance and an excellent toughening mechanism can be attained, resulting in materials with better performance.

Keywords