Transactions of the Association for Computational Linguistics (Jan 2021)

MKQA: A Linguistically Diverse Benchmark for Multilingual Open Domain Question Answering

  • Shayne Longpre,
  • Yi Lu,
  • Joachim Daiber

DOI
https://doi.org/10.1162/tacl_a_00433
Journal volume & issue
Vol. 9
pp. 1389 – 1406

Abstract

Read online

AbstractProgress in cross-lingual modeling depends on challenging, realistic, and diverse evaluation sets. We introduce Multilingual Knowledge Questions and Answers (MKQA), an open- domain question answering evaluation set comprising 10k question-answer pairs aligned across 26 typologically diverse languages (260k question-answer pairs in total). Answers are based on heavily curated, language- independent data representation, making results comparable across languages and independent of language-specific passages. With 26 languages, this dataset supplies the widest range of languages to-date for evaluating question answering. We benchmark a variety of state- of-the-art methods and baselines for generative and extractive question answering, trained on Natural Questions, in zero shot and translation settings. Results indicate this dataset is challenging even in English, but especially in low-resource languages.1