Crystals (Apr 2025)

Seven New Irbesartan Salts: Significantly Improved Dissolution, Excellent Hygrothermal Stability, and Characteristic Supramolecular Synthons

  • Junxiao Wang,
  • Chuanhua Wu,
  • Menglong Zhang,
  • Lingli Hou,
  • Wei Chen,
  • Dingding Jing,
  • Ying Bao

DOI
https://doi.org/10.3390/cryst15040342
Journal volume & issue
Vol. 15, no. 4
p. 342

Abstract

Read online

Irbesartan (IRB) is a commonly used BCS Class II antihypertensive drug requiring dissolving capacity enhancement to address oral bioavailability limitations. In this work, seven new IRB salts were successfully synthesized, including one carboxylate (IRB-MAL) and six sulfonate salts (IRB-TOSA, IRB-BSA, IRB-4-CBSA, IRB-2, 5-CBSA, IRB-MSA, and IRB-CPSA). Their vitro dissolution, intrinsic dissolution rates (IDRs), thermal/hygroscopic stability (via thermal analysis, dynamic vapor sorption, and accelerated stability tests), and phase transition process (monitored by in situ Raman spectroscopy) were evaluated. The results revealed that IRB-TOSA, IRB-MAL, IRB-BSA, IRB-4-CBSA, and IRB-MSA salts exhibited IDRs of 0.3194–0.7383 mg/(cm2·min), all significantly higher than IRB, with dissolution concentrations increased by 14.9–113.6%. IRB-TOSA and IRB-4-CBSA salts demonstrated excellent hydrothermal stability. Single crystal structure analysis confirmed proton transfer from coformers’ sulfonic/carboxylic acids (deprotonation site, H-out) to IRB’s diazaheterocycles (protonation site, H-in) in IRB salts. Six sulfonate salts exhibited NH-in–H···OH-out and Nnon-H-in–H···OH-out hydrogen bonds, with the former absent in IRB-MAL. Furthermore, supramolecular synthon studies revealed distinct hydrogen-bonding patterns (e.g., bifurcated bonds in 2,5-CBSA and CPSA salts) that correlate with moisture resistance. Quantitative analysis of IRB salts suggested hydrogen bond strengths may influence their melting points (decomposition temperatures). This study demonstrates that IRB salts hold promise for advanced pharmaceutical applications.

Keywords