Journal of Lipid Research (Jul 2007)

New BODIPY lipid probes for fluorescence studies of membranes

  • Ivan A. Boldyrev,
  • Xiuhong Zhai,
  • Maureen M. Momsen,
  • Howard L. Brockman,
  • Rhoderick E. Brown,
  • Julian G. Molotkovsky

Journal volume & issue
Vol. 48, no. 7
pp. 1518 – 1532

Abstract

Read online

Many fluorescent lipid probes tend to loop back to the membrane interface when attached to a lipid acyl chain rather than embedding deeply into the bilayer. To achieve maximum embedding of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophore into the bilayer apolar region, a series of sn-2 acyl-labeled phosphatidylcholines was synthesized bearing 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene-8-yl (Me4-BODIPY-8) at the end of C3-, C5-, C7-, or C9-acyl. A strategy was used of symmetrically dispersing the methyl groups at BODIPY ring positions 1, 3, 5, and 7 to decrease fluorophore polarity. Iodide quenching of the phosphatidylcholine probes in bilayer vesicles confirmed that the Me4-BODIPY-8 fluorophore was embedded in the bilayer. Parallax analysis of Me4-BODIPY-8 fluorescence quenching by phosphatidylcholines containing iodide at different positions along the sn-2 acyl chain indicated that the penetration depth of Me4-BODIPY-8 into the bilayer was determined by the length of the linking acyl chain. Evaluation using monolayers showed minimal perturbation of <10 mol% probe in fluid-phase and cholesterol-enriched phosphatidylcholine. Spectral characterization in monolayers and bilayers confirmed the retention of many features of other BODIPY derivatives (i.e., absorption and emission wavelength maxima near 498 nm and ∼506–515 nm) but also showed the absence of the 620–630 nm peak associated with BODIPY dimer fluorescence and the presence of a 570 nm emission shoulder at high Me4-BODIPY-8 surface concentrations. We conclude that the new probes should have versatile utility in membrane studies, especially when precise location of the reporter group is needed.

Keywords