Advanced Science (Oct 2020)

Cavin1 Deficiency Causes Disorder of Hepatic Glycogen Metabolism and Neonatal Death by Impacting Fenestrations in Liver Sinusoidal Endothelial Cells

  • Zhuang Wei,
  • Jigang Lei,
  • Feng Shen,
  • Yuxiang Dai,
  • Yan Sun,
  • Yilian Liu,
  • Yan Dai,
  • Zhijie Jian,
  • Shilong Wang,
  • Zhengjun Chen,
  • Kan Liao,
  • Shangyu Hong

DOI
https://doi.org/10.1002/advs.202000963
Journal volume & issue
Vol. 7, no. 19
pp. n/a – n/a

Abstract

Read online

Abstract It has been reported that Cavin1 deficiency causes lipodystrophy in both humans and mice by affecting lipid metabolism. The ablation of Cavin1 in rodents also causes a significant deviation from Mendelian ratio at weaning in a background‐dependent manner, suggesting the presence of undiscovered functions of Cavin1. In the current study, the results show that Cavin1 deficiency causes neonatal death in C57BL/6J mice by dampening the storage and mobilization of glycogen in the liver, which leads to lethal neonatal hypoglycemia. Further investigation by electron microscopy reveals that Cavin1 deficiency impairs the fenestration in liver sinusoidal endothelial cells (LSECs) and impacts the permeability of endothelial barrier in the liver. Mechanistically, Cavin1 deficiency inhibits the RhoA‐Rho‐associated protein kinase 2‐LIM domain kinase‐Cofilin signaling pathway and suppresses the dynamics of the cytoskeleton, and eventually causes the reduction of fenestrae in LSECs. In addition, the defect of fenestration in LSECs caused by Cavin1 deficiency can be rescued by treatment with the F‐actin depolymerization reagent latrunculin A. In summary, the current study reveals a novel function of Cavin1 on fenestrae formation in LSECs and liver glycogen metabolism, which provide an explanation for the neonatal death of Cavin1 null mice and a potential mechanism for metabolic disorders in patients with Cavin1 mutation.

Keywords