Heliyon (Dec 2022)

The novel m6A writer METTL5 as prognostic biomarker probably associating with the regulation of immune microenvironment in kidney cancer

  • Wei Zhang,
  • Yumei Chen,
  • Zhipeng Zeng,
  • Yue Peng,
  • Lintai Li,
  • Nan Hu,
  • Xucan Gao,
  • Wanxia Cai,
  • Lianghong Yin,
  • Yong Xu,
  • Xinzhou Zhang,
  • Donge Tang,
  • Yong Dai

Journal volume & issue
Vol. 8, no. 12
p. e12078

Abstract

Read online

Nowadays, among all urinary system cancers, the mortality of kidney cancer (KC) has risen to the first, and the incidence has been keeping on the third. Many recent studies have demonstrated that m6A modification regulated by the methyltransferases (writers) is closely related to the tumorigenesis of multiple cancers. In our previous study, we found that the methyltransferase METTL5 had a stronger association with the hazard ratio of KC more than most tumors, indicating its special function in carcinogenesis of KC. Until now, the expression, functions and mechanism of METTL5 in KC are still unclear. In this study, we analyzed the mRNA expression of METTL5 using the data sets from public databases, and revealed that the METTL5 expression was significantly up-regulated in tumor tissues of kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP) compared to normal tissues. Also, the METTL5 expression was correlated with the tumor stage and grade, indicating the potential involvement of METTL5 in tumor progression. Additionally, the higher expression of METTL5 predicted poorer prognosis of KIRC and KIRP patients. Subsequently, we revealed that the functions of METTL5 in KIRC might be related to immune modulation, because its co-expressed gene were enriched in immune-relevant pathways including Th17 cell differentiation, Th1 and Th2 cell differentiation, and phosphatidylinositol 3-kinase activity. Next, we disclosed that the METTL5 expression was correlated to the microenvironment score and immune score of KIRC and KIRP, and associated with the infiltration ratios of 25 types of immune cells. Besides, we demonstrated a wide difference of the METTL5's effect on the survival of patients with high and low immune infiltration, further suggesting METTL5 might affect tumor development via modulating the immune microenvironment. The findings of our study provide a novel potential prognostic biomarker and immune drug target for KC.

Keywords